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Abstract—Recently, Berry-Tse introduced a model for informa- as Gaussian noise, the formulation in these works are not
tion theoretic games on interference channels, which combines strictly information-theoretic in nature.

game theory and information theory to analyze the interaction g regt of the paper is organized as follows: Section II
of selfish users. The fundamental quantity in such games is the . trod the f lati f th Section Il introet
Nash equilibrium region which has been characterized in several Introduces the formulation o the game. section 1ll introds!

specific interference channels. This paper uses the game thedeet the main result of this paper and describes with motivating
techniques of potential functions to study this region for gener examples the approach taken to prove it. The formal proof is

K user linear deterministic interference channels. In particular, provided in Section IV and concluding remarks are provided
it is shown that the Nash equilibrium region is non-empty for in Section V

any such K user interference channel.
Il. PROBLEM FORMULATION

|. INTRODUCTION We assume that communication starts at tifheUser

In network information theory, it is usually assumed that afommunicates by coding over blocks of lengih symbols,
userscooperatively optimize their communication strategies! = 1,2,... K Transmitteri sends on block: information
This may not be a realistic assumption if users are selfi§#S b;1 ,---,b; ;. by transmitting a codeword denoted by
and are only interested in maximizing their own benefit. Suokfk) = [xgk)(l), e ,xgk)(Ni)]. All the information bits are
a situation is naturally modeled as a non-cooperative ganegually probable and independent of each other. Receiver
Recently in [9] a framework combining information theoryi observes on each block an output sequence through the
and game theory was developed to model such situations iiserference channel, which specifies a mapping from the
users communicating over an interference channel (IC)s Thinput sequences of usefs, 2, ... K} to the output sequences
work introduced the notion of a Nash equilibrium region aef users{1,2,... K}. Note that, in a linear deterministic
the game theoretic counterpart of the capacity region ofimterference channel which will be considered in this paper
network and showed that this region was non-empty for tBis mapping is a deterministic one [7]. Given the observed

user linear deterministic ICs. This analysis was geneedlio sequence(y'” = [y (1),....y'"(N)].k = 1,2,....},
2 user Gaussian ICs in [10] and some special classek ofreceiveri generate guessé$’ for each of the information bit.
user linear deterministic ICs in [12], [13]. Without loss of generality, we will assume that each regeive

It is well known that in a general non-cooperative game, performs maximum-likelihood decoding on each bit, i.e.
Nash equilibria may not exists. The existence of equilibrigqooseg}g_k) that maximizes the posterior probability of the
in the interference games studied in [9], [10], [12], [13]svagpserved sequengéll),ygz), ... given the transmitted b&gf).
shown on a case by case basis by explicitly constructing strategy s; of useri is defined by its message encoding,
encoding and decoding strategies which satisfied the ®djuifyhich we assume to be the same on every block and involves:
incentive properties. In this paper, we show that in the Case o number of information bitd: and the block length
of linear deterministic channels these results follow fram N, of the codewords !
underlying ‘potential’ property of such games, which issgty . th:a codebooke: the' set of codewords employed by
related to the class ofleakly acyclic games studied in [11]. transmitteri v
Moreover, this property holds for games on genekaluser . the encode,rf {1 25} % 0, — C;, that maps on
linear deterministic ICs, enabling us to show that any such oL k0 (k)
channel has a non-empty Nash equilibrium region. each b_IOCkk' the mess(z)g@ni ::(k)(bil(kv)' -bip,)toa
Other game theoretic approaches for interference channels transmitted codewordt;™ = fi(m;"",w;"") € Ci,
have been studied before, mainly focusing on Gaussian mode the rate of the codel; = B;/N;.
els, e.g. [1], [2], [8]. However, because of the restrictiorthe Strategies s1, $2,...5x 0f users {1,2,... K} jointly
use of random Gaussian codebooks or treating the intederenletermine the average bit error probabilitiqék)



B% Zf;l P(l}ﬁf) # bz(f)), i=1,2,... K. [1l. M AIN THEOREM AND MOTIVATING APPROACHES

Thg encoder of each transmittemay employ a stochastic  p general game need not have a Nash equilibrium in pure
mapping from the message to the transmitted codewoidiategies, as we pointed out in the introduction. The commo
w; "’ € §); represents the randomness in that mapping. W@proaches for establishing the existence of an equitibriu
assume that this randomness is independent between iPﬂ@ames include appealing to certain convexity properies
two transmitters and across different blocks. Furtherma®  the game [3] or using so-called ‘potential function’ argurtse
assume that each transmitter and its corresponding receiyf. The strategy set that each user utilizes in our interiee
have access to a source afmmon randomness, so that the game does not have a natural notion of convexity. However,

realizationw(" is known at both transmitter and receiver, we are able to find a type of potential function, leading to our
but not at the other receiver or transmitter. main result stated next:

For a given error probability threshold> 0, we define an Theorem 1: For any K user linear deterministic interfer-
e-interference channel game as follows. Each usehooses ence channellyg is non-empty.

a strategys;, : = 1,2,... K and receives a pay-off of To prove this theorem, we first prove a weaker version of

e (R it, given by,
Ti(81, 82, ... 8K) = {R“ it p; (_81"92""SK) <€ vk, Theorem 2: For anyn > 0 and anyK user linear deter-
0,  otherwise. ministic interference channefixg () is non-empty.

This theorem will be proved in the next section using

A strategy tuples = (s1,892,...8k) IS defined to be .
(1—e¢)-reliable provided that they result in an error probabilitya sequence of lemmas. Next we give some background to

. . : motivate our approach.
pi(s) < e Vi = 1,2,...K. An (1 — ¢)-reliable pair of .
strategies is said to achieve the rate-tufia, Ro, . .. Ric). Let S denote the set of all possible strategy tuples for&he

For ane-game, a strategy tuplés:, s 5% ) is a Nash users. Note that we do not assume anything about the fingenes
g ' gy uplesy, 5, - - Sk of S. Let G¢ be ane-game for the given interference channel.

equilibrium (NE) if none of the users can unilaterally des . ) ,
. . . i : ) To prove these theorems, we consider a related ‘stage game
viate and improve its pay-off, i.e., if for each user=

1,2, ... K, there is no other strategy such thatr, (s, s* .) > in which the users repeatedly play. At any stage of the

. e U . i ~ _. game, only one of thé&( users makes a move by changing its
mi(sf,s*,). - In other words, if usei attempts to transmit at : .
Lo o S .o - strategy that was adopted in the previous stage. sphétter
a higher rate than what it is receiving in a Nash equilibrium - : . 9 I
. .. reply path’ is a sequence of action profiless?,...s" ¢ S
and none of the other users changes its strategy, then’'aser . .
- such that for everyt < ¢ < L — 1, there is exactly one useér
error probability must be greater than such thas’™ % st st — s¢ andm, (s1) > 7, (') +
Similarly, a strategy tuple(s;,ss,...s} ) is an n-Nash ie te) "=t e v v "
equilibrium ()-NE) of an e-game if none of the users can

wheres’ denotes the strategy profile in tlith stage.
unilaterally deviate and improve its pay-off by more than Note that, if at any stage of the game there is no move
i.e., if for each usel, there is no other strategy; such that

left for any user on ansj-better reply path’, then the game
¢ must have reached apNE. Thus proving existence of-
milsi,87,) > milsy, 8, . . ?IE is equivalent to pro?/ri*ng that thep gamtgaJ has a con?;rgent
Note that when a user deviates, it does not care about th
reliability of the other user but only its own reliability.oS

n—%etter reply path.
I ) 2 :
in the above definitiongs;, s* ;) is not necessarilyf1 — ¢)- ly acyclic ga are a class of games for which
reliable.

a convergent)-better reply path exists starting at any initial
Given anyz > 0, the capacity regiorC of the inter- strategy profiles and for anyn > 0. Lettingn =0, it follows
) that such games have an NE. In [11], it is shown that weakly
ference channel is the closure of the set of all rate tupl
(R1, R, ... Rk) such that for every € (0, €), there exists a

S%yclic games in which players have finite strategy spaces ha
(1—¢)-reliable strategy tuplés) which achieves the rate tuplethe following useful characterization:
(R1, Ry, ... RK).

A finite game is weakly acyclic if and only if there exists a
A . . potential functions : S — R such that, for any strategy tuple
hThe qNE}[ﬁq eciwllbrlun;trheglontcl\;Eoz) of the}%nterfelr%ence s € S that is not a Nash equilibrium, there exists a player
channel is the closure ot the set ot ra e_pm, 2, Ric) with a strategys; € S; such thatr;(s,,s_;) > m;(s;, s—;) and
such that for a givem > 0, there exists @ > 0 (dependent on
n) so that ife € (0, €), there exists g1 — ¢)-reliable strategy

d(s;,5_4) > é(si,s_;). We note here that the proof of this
tuple (s) that achieves the rate tupléty, s, . .. R) and is characterization relies heavily on the fact tifais finite.
ann-NE. Clearly,Cxg(n) C C.

Our proof of Theorem 2 is based on using a similar potential
Also, let the Nash equilibrium region Cng of the in-

argument to show the convergencejdbetter reply paths in an

. e-interference game. This requires first finding such a paent
terference channel is the closure of the set of rate tupl
(R1,R2,...Rk) such that ife € (0,€), there exists a

ction and second generalizing the results in [11] to itdin
(1 — ¢)-reliable strategy tuplés) that achieves the rate tuple

strategy sets.
; S Before we discuss how to choose a potential function, let
(R1, Ra,... Rk) and is a Nash Equilibrium. P
1As per convention—i denotes the set of all the other us¢ts2,...i —

us briefly review the model from [12] for a general user
1,7+ 1,... K) excepti. 2potential games [4] are special classes of weakly acyclic game
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Fig. 1. 3 user one-to-many linear deterministic interference channel Fig. 2. 2 userZ linear deterministic interference channel

linear deterministic interference game. Linear deterstioi gnq so,

interference channels were introduced in [7] which are easy

to visualize and have been shown to be closely related to il h(y2)

Gaussian interference channels. In the following disaussi Ps™) <4~ N +30<4-n+4o. ©)
n;; denotes the number of ‘direct’ levels from transmittdp

receiveri, whereasy;; denotes the number of ‘cross’ levelsHence, fore small enough, this choice af is not monoton-
from transmitteri to receiverj. In a symmetric setting, they iCally increasing on any better reply path starting from the

can be represented by, andn. respectively. chosen strategy profile and so cannot be a potential.

To search for a meaningful potential function there are Note that on the better reply path frosh to s**! in the
only a few fundamental quantities like input entropy, outPrevious example, the sum of the output entropies of all the
put entropy or the information rate that can be made useusers increases. This leads us to explore another choice of
of, particularly because we make no assumption about tR@tential, nakmely the Sukaf output entropies of all thie
topology of the interference network. One candidate péentUsers: let¢,£s. ) = 2= h(y;) where, with a slight abuse of
¢ is the sum of the information rates of all th& users, notation,y; is the output signal of théth user at stagé of
i.e., p(sk) = Zfil m:(s%). 3 However, this function does notthe game, and(-) is the entropy functiod.We demonstrate
always satisfy the needed strict monotonicity of a poténtiirough an example that this choice ¢fdoes not entirely
function. To see this, consideraiser one-to-many symmetric SErve our purpose either. Conside aser linear deterministic
linear deterministic interference network with, = 2 and Z interference channel with,; = 2,712 = 1,n2; = 3 as
ne = 2 as shown in Figure 1. Suppose at the stagef shown in Figure 2. Suppose at stageuserl1 is transmitting
the game, the strategy tupk¥ is one where userg and @an independent bit from its topmost level but is silent on its
3 are transmitting independent uncoded bits from each Bpttom level, while usez is transmittingBernoulli(3) ‘noise’
their 2 levels, while user2 is silent on both the levels. At (as in [14]) from its top most level and uncoded bits from
this stage,m;(s) = 2 = ms(s*), while mo(s¥) = 0 and its two lower levels. Thus, we have; (s¥) = 1, (s¥) = 2
¢(s*) = 2+ 2 = 4. At stagek + 1, for any e < % and while ¢(s¥) = 2+ 3 = 5. At stagek + 1, for ¢ small enough,

n < 2, only user2 can make a move on apbetter reply path there is no move available for useon ann—beﬁtefr reply path.
so as to increase its own rate. After such a move it followdowever, forn < 1, user2 can start transmitting at least

from Fano’s inequality that bits of useful information instead of ‘noise’ from its topsto
L level so thatmy(sk*1) > 2+ > 2 = my(s¥). After such a
n< Ry < % +§ (1) change@(s"*!) < 5 = ¢(s*) so that the potential function

defined as above is not strictly monotonically increasing on
whereé goes to zero as does.* Likewise, applying Fano to the n-better reply path. However, we note again that although

usersl and3, it follows that the sum of output entropies did not increase in going flom
h(ys) to k + 1, the sum of the information rates did go up frdgn
Ri+ Ry <4-2 N +24 (2) to3+n.

With this background, we propose a potential function
3To be precise, we wanp(s*) to be the maximum possible information which we will use to prove our main result in the next section.
rates for a given output entropy at each receiver. When onealsmges its
strategy on am-better reply path, this potential needs to be recomputed by
adjusting for maximum possible information rates for otherrsises well. 5The output entropy at receiverconsidered here is actually conditional on
4Here N refers to a common block length for all th€ users and denotes the common randomness that is shared between the transmitteecaider
the lowest common super-block length that is a multiple\gffor all ¢ [9] of user: [14]



Al Lemma 2: Suppose after stage, the strategy tuple” is
a2 not ann-NE. Then there always exists a strategy tugfe!
for the next stage such that, (s**1) > ¢,(s*).
Proof: Sinces® is not ann-NE strategy, there is a usér
who can make a move on apbetter reply path. In going from
s* tos**+1 only i changes its strategy so that the contribution of
all the other users t@, remains the same. Also, sincenoves
in stagek + 1 to increase its own utility (reliable information
rate), it can always choose to do so without decreasing its
own output entropy. Further, by Lemma 1, corresponding to
c1 this strategy, there exists a srtategy which does not deerea
the output entropy at any other user’s receiver. Hence, &t th
end of stagée: + 1, ¢, does not go below its value in stage
|
Lemma 3: Suppose after stage the strategy profile is not
ann-NE and there exists ng-better reply so thap, (1) >
Let 6 : S — R? be defined by #.(s*), then there must exist a strategy tuple on the better
p p reply path so that, (s**1) > ¢, (s*)
Proof: First note that under g-better reply, usef’s rate
6(s%) = (0a(s"), 0y (s")) = (Z h(yf%zﬂsk)% (4) must go up by; and from Fano must satisfy

i=1 i=1
h(yi) _ h(yilxi)

B1

B2

Cc2

Fig. 3. 3 user bi-symmetric linear deterministic interference channel

Further, consider the lexicographic order o(s") = (a*, b*) R; < + 0. (6)
given by N N
) , _ for somed > 0. In going from stagek to &k + 1, h(y;|x;)
_ B L is unchanged and so either (; increases by; with A(y;)
o(s') > ¢(s?) S or (5) unchanged or (iif(y;) also increases. Under the assumptions
if o' =a’, then bl > b of the Lemma 1, we next argue that (i) must be the case.

Assume that (ii) holds; then from the Lemma 1, there must

First note that this choice of potential function works fopyiqt another strategy choice for usewhich also increases
both the examples considered before. Let us illustratenng h(y;) and leaves the output entropy of the other users

potential function with an example and show how a Sta%changed. Since this move must also belzetter reply and
game can reach a Nash equilibrium. Conside3 aser bi- we haveg, (s*+1) > ¢,(s*), so it violates the assumptions
symmetric linear deterministic interference channel [8h ¢ the current lemma. Hence, (i) must occur. But singg;)

na = 2,n. =1 as shown in Figure 3. A possible play of theg ynchanged, usercan achieve this rate in such a way that
game on a better reply path is given in Table | (fpande g empirical entropy of its new codebook is the same as that
arbitrary small). at stagek and so every other user can achieve the same rate

IV. PROOFS as in stagek. But sincei increases its rate by at least we
To establish Theorem 1 we first prove the following usenust haveg, (s*1) > ¢, (s*). [ ]
ful lemmas which hold for linear deterministic interferenc Lemma 4: For anyn > 0 ande small enough, there exists
channels: an n-better reply path on whicky(-) is a strictly increasing
Lemma 1: Given a strategy profile® for all users, suppose monotonic function.
that a single usei changes to a new strategyf ™ while Proof: This follows immediately from Lemmas 2 and 3
all other users keep their strategies fixed. If this new styat and the order defined of(-). [ ]

increases (or does not decrease) the output entropy at éhe usLemma 5: ¢(-) converges to a limit on such a better reply

1’s receiver, then there exists a strateiﬁf ! of useri which path

leads to the same output entropyﬁs‘.H at useri’s recevier Proof: First note thaté(-) is a bounded function. This

and does not decrease the output entropy at any other user'decause, the:-component is bounded by the choice of

receiver. channel model (as in a deterministic IC, the entropies of the
Proof: This follows from the fact that in case usér received symbols at each receiver are uniformly bounded for

in going from stagek to k + 1, chooses a coding strategyall possible inputs), whereas, thecomponent is bounded

that increases (or does not decrease) the output entropybwtFano’s inequality. Also, by Lemma 4j(-) is a strictly

its own receiver but reduces its contribution to the outpumcreasing monotonic function on such abetter reply path.

entropies of others, it can transmit extra common randosindsence the Lemma follows from the completenesRéf m

[14] such that his eventual contribution to output entrepié Proof of Theorem 2: It is sufficient to consider a&-

other receivers does not decrease from stage stagek + 1. better reply path starting at any strategy with maximumltota

m output entropy. Then, by Lemma 3, (s') must increase by



TABLE |
A PLAY ON THE BETTER REPLY PATH FOR A3 USER LINEAR DETERMINISTIC BFSYMMETRIC INTERFERENCE CHANNEL

Game Strategys Pay-off w(s) Potential(s) Summary
Stagek
0 All 3 users are silent and transmijt All pay-offs are0 #(s") = (0,0) Not an NE
nothing from each of their two lev-
els
1 User1 moves and starts transmit- 71 = 2,m3 =73 =0 o(s) = (3,2) Not an NE
ting uncoded bits from its two lev-
els
2 User2 moves and starts transmit- 7y = 1,72 = 1, w3 =0 #(s2) = (5,2) Not an NE
ting an uncoded bit from its top
most level
3 User 3 moves and starts transmif- 71 = 1,mo = 1,73 =1 #(s%) = (6,3) NE
ting an uncoded bit from its top
most level

7 in each iteration. Hence, this sequence must converge tgames. Future work in this direction might involve finding
constantg, (s*) in a finite time & and then,s* is an»-NE similar results for general Gaussian interference netsjork
for an e-game. This shows that arygame has am-NE with  developing algorithms that help the system reach equilibri
rates (R, Rs, ... Rx). To show that such a rate tuple is inwith reasonable time guarantees and also trying to estimate
Cne, We need to show thdtR;, R, ... Ri) is achievable as the efficiencies of such equilibria.
an n-NE for all e-games withe small enough. ACKNOWLEDGMENT

To do this, consider aff-better reply path. This converges g gerry would like to thank J. Marden for useful discus-
to an 3-NE which must also be an-NE. At such am-NE,  gions on weakly acyclic games.
we must have
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